7. (a) Find the value of n so that the equations $V=r^{n}\left(3 \cos ^{2} \theta-1\right)$ satisfies the relation $\frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)=0$.
(b) If $x=e^{r} \cos \theta, y=e^{r} \sin \theta$; show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=e^{-2 r}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial^{2} u}{\partial \theta^{2}}\right)$.

UNIT - IV
8. (a) Change the order of Integration in $I=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate the same.
(b) Find by Triple Integration; the volume of sphere of radius ' a '.
9. (a) Find the surface of solid generated by revolving ellipse $x^{2}+4 y^{2}=16$ about major axis.
(b) (i) Evaluate $\int_{0}^{\infty} e^{-x^{2}} x^{2 n-1} d x$
(ii) $\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{5 / 2} x d x$

Roll No. \qquad

24002

B. Tech 1st Semester (Common for All

Branches) Examination - December, 2018 MATHEMATICS - I
Paper: Math-101-F
Time : Three Hours]
[Maximum Marks : 100
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, by selecting one Question from each Unit. Question No. 1 is compulsory.

1. (a) $\sum \cot ^{-1} n^{2}$
(b) Find the rank of the matrix :
$\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$
(c) Prove that the matrix :

$$
\frac{1}{3}\left[\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right] \text { is orthogonal. }
$$

24002-11,700-(P-4)(Q-9)(18)
P. T. O.
(d) If $f(x, y)=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x-y}\right) \div$. Find $\frac{\partial u}{\partial x}$.
(e) $u=\sin ^{-1}(x-y) ; x=3 t, y=4 t^{3}$ find $\frac{d u}{d t}$.
(f) Find the radius of curvature at the given following curve :

$$
\sqrt{x}+\sqrt{y}=\sqrt{a} \quad \text { at }\left(\frac{a}{4}, \frac{a}{4}\right)
$$

(g) Evaluate $\int_{0}^{\infty} x^{3} e^{-x^{3}} d x$.

UNIT - I

2. (a) Discuss the convergence of the series:

$$
\frac{x}{2 \sqrt{3}}+\frac{x^{2}}{3 \sqrt{4}}+\frac{x^{3}}{4 \sqrt{5}}+\ldots \ldots .+\infty
$$

(b) Discuss the convergence of the series:

$$
x+\frac{2^{2} \cdot x^{2}}{2!}+\frac{3^{3} \cdot x^{3}}{3!}+\frac{4^{4} \cdot x^{4}}{4!}+\frac{5^{5} \cdot x^{5}}{5!}+\ldots \ldots . \infty
$$

3. (a) $\sum \frac{(x+2)^{n}}{3^{n} \cdot n}$
(b) Discuss the convergence of an alternating series:

$$
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots \ldots \ldots .
$$

4. (a) Find the inverse of matrix $A=\left[\begin{array}{rrr}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$ using elementary transformations.
(b) For what values of a and b do the equations $x+2 y+3 z=6, x+3 y+5 z=9,2 x+5 y+a z=6$
have :
(i) No solution
(ii) Unique solution
(iii) More than one solution
5. (a) . Are the following Vectors Linear Dependent? If so, find the relation among them, $x_{1}=(2,-1,4), x_{2}=(0,1,2), x_{3}=(6,-1,16)$.
(b) Find Eigen values and Eigen vectors of Matrix :

$$
\begin{gathered}
A=\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \\
\text { UNIT - III }
\end{gathered}
$$

6. (a) Find the asymptotes of following curve :

$$
3 x^{3}+2 x^{2} y-7 x y^{2}+2 y^{3}-14 x y+7 y^{2}+4 x+5 y=0
$$

(b) Find the value of $\sin 46^{\circ}$ correct to four places of decimals using Taylor series.

