9. Determine the scope and deflection at the free end and of a cantilever beam as shown in figure by Moment Area Method.

Roll No. \qquad

24064

B. Tech. 3rd Sem. (Civil) Examination - December, 2018 STRUCTURAL ANALYSIS - I

Paper: CE-201-F
Time : Three Hours]
[Maximum Marks : 100
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No. 1 is compulsory. Attempt any four questions from the rest of paper choosing one, from each Section.

1. (i) Define Modular Ratio.
$10 \times 2=20$
(ii) Define relation between E, C and K.
(iii) Define Maxwell law of Reciprocal theorem.
(iv) Define End conditions of the Column.
(v) Define principal stress and principal strains.
(vi) Differentiate between determinate and
Indeterminate structures.

24064-4000-(P-4)(Q-9)(18)
P.T.O.
(vii) Explain the principle of least work.
(viii) Define thermal stresses of thermal strains.
(ix) Explain conjugate beam theorem.
(x) Define Torsional Rigidity.

SECTION - A

2. Three parallel wires in the same vertical plane pointy support a load of 15 KN . The middle wire is of steel and is 1 m long. While the outer ones of brass, the length of each being 1.05 m . The area of Cross section of each wire is $200 \mathrm{~mm}^{2}$. After the wires have been so adjusted as to carry one kind of the load, a further load of 35 KN is added. Find the stress in each wire \& fraction of the whole load carried by the steel wire.
3. A point is a strained material is subjected to stresses as shown in figure using Mohr's Circle method, determine the normal and tangential stresses across the oblique plane. Check the answer analytically.

$24064-4000-(\mathrm{P}-4)(\mathrm{Q}-9)(18)$
(2)
4. Prove that P-n case of Rectangular cross-section, the maximum shear stress at the NA is 50% more than the mean value.

20
5. An I-section with rectangular ends has the following dimensions:

Flanges $-150 \mathrm{~mm} \times 20 \mathrm{~mm}$ Total depth $=340 \mathrm{~mm}$
$\mathrm{Web}-300 \mathrm{~mm} \times 10 \mathrm{~mm}$
Determine the maximum shearing stress developed in the beam for the shearing force of 35 KN .

SECTION - C

6. Determine the maximum stress induced in a horizontal strut of length 3.5 m rectangular crosssection 45 mm wide and 85 mm deep when it carries an axial thrust of 150 KN and a vertical load of $9 \mathrm{kN} / \mathrm{m}$ length. The strut is having pin joints at its ends. Take E $=210 \mathrm{GN} / \mathrm{m}^{2}$.
7. Derive Euler's Formula for crippling load. When an end of column is fixed and outer end is hinged. Write down the limitations of Euler's theory.

SECTION - D

8. Construct the Bending moment and shear force diagram for the beam as shown in figure.

