(4)

24422

9.	(a)	What are uniform DFT filter banks? Explain in			
		detail.		10	

- (b) Write the short note on the following : 10
 - (i) Filter Structure

24422

(ii) Multistage decimator and interpolator

24422

B.Tech. 7th Semester (F) Scheme (EE) Examination,

December-2018

DIGITAL SIGNAL PROCESSING

Paper-ECE-409-F

		- ··· F ··· · · · · · · · ·	-	
Tin	ie allo	wed: 3 hours] [N	[Maximum marks : 100	
Vo	te:Q	uestion no. 1 is compulsory .	Attempt one question	n
	(a)	What are the advantage processing ?	s of digital signa	.1 1
	(b)	Find the Z transform of u[n]	and draw its ROC.	4
	(c)	Differentiate between analo	og & digital Filters. 4	•
	(d)	What is FIR System ? Con with an IIR System.	npare an FIR System	ı F
	(e)	Explain sampling rate conv	version process. 4	ŀ
		Section-A		
,	(a)	Evaluin the system and its	alogaification 10	

2. (a) Explain the system and its classification. 10

(b) Find the 4-point DFT of the sequence

$$\mathbf{x}(\mathbf{n}) = \cos \frac{\mathbf{n}\pi}{4} \ . \tag{10}$$

3. (a) Explain in detail various properties of discrete Fourier transform (DFT). 10

24422-P-4-Q-9(18) [P.T.O.

24422

8

(b) Draw the structure of cascade and parallel realization of the system characterized by : 10

$H(Z) = \frac{\left(1 - Z^{-1}\right)^3}{\left(1 - \frac{1}{2}Z^{-1}\right)\left(1 - \frac{1}{8}Z^{-1}\right)}$

Section-B

- 4. (a) State and prove the sampling theorem. Draw the spectrum of a sampled signal and also explain the aliasing effect.
 12
 - (b) Determine the Z-transform of

 $\mathbf{x}(\mathbf{n}) = \cos \omega_0 \mathbf{n}$ for $\mathbf{n} \ge 0$.

5. (a) Determine the inverse Z-Transform of X(Z) by using partial fraction expansion method : 14

$$X(Z) = \frac{Z}{3Z^2 - 4Z + 1}$$

If the ROC are :

(i) |Z| > 1

(ii)
$$|Z| < \frac{1}{3}$$

(iii)
$$\frac{1}{3} < |Z| < 1$$

(b) Explain the different properties of region of convergence (ROC) of Z-transform. 6

Section-C

- 6. (a) Explain the design steps of IIR filter by Bi-linear transformation method and also discuss the warping effect. 14
 - (b) Using bilinear transformation obtain H(Z)

if
$$H(S) = \frac{1}{(S+1)^2}$$
 and $T = 0.1$ s. 6

- 7. (a) Obtain the mapping formula for the approximation of derivatives method using backward difference.
 - (b) Explain in detail the rectangular window technique for FIR filter design. 10

Section-D

- 8. (a) What is the need for multirate digital signal processing (MDSP) ? Write the various advantages and application of MDSP. 10
 - (b) Explain the interpolation process for an integer factor L with an example.10

24422

[P. T. O.