9. Evaluate the following integral :
(i) $\int \frac{1}{x \log x} d x$
(ii) $\int \frac{x^{2}}{(x-1)^{3}(x-1)} d x$
(iii) $\int \frac{d x}{2+3 \cos x}$

Roll No. \qquad

97663

BCA 1st Semester (New) Examination - November, 2018
 MATHEMATICS
 Paper: BCA-103

Time : Three Hours]
[Maximum Marks: 80
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five question in all, selecting one question from each Section. Q. No. 1 is compulsory.

1. (a) Given $A=\{a, e, i, o, u\}, B=\{r ; a, m\}$, find $A \cap B$, $A-B$.
(b) If $A=\left[\begin{array}{cc}2 & -1 \\ 4 & 2\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$, find $\mathrm{A}+\mathrm{B}$.
(c) Define many - one function.
(d) Evaluate $\lim _{x \rightarrow 1 / 2} \frac{4 x^{2}-1}{2 x-1}$.
(e) If $y=\cot 3 x$, find $\frac{d y}{d x}$.
(f) If $y_{0}=\cot ^{-1} x^{3}$, find $\frac{d y}{d x}$.
(g) Evaluate:

$$
\int \frac{x}{x-3} d x
$$

(h) Evaluate:

$$
\int \frac{1}{\sqrt{2+x}} d x
$$

SECTION - I

2. (a) To prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
(b) In a class of 25 students, 12 students have taken Economics; 8 have taken Economics but not maths Find (i) the numbers of students who taken Economics and Maths (ii) those who have taken Maths but not Economics.
3. (a) Prove that $\left|\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=x^{2}(x+a+b+c)$
(b) Solve :

$$
x-y-z=1,2 x+y+z=2, x-2 y+z=4
$$

SECTION - II

4. (a) Let θ be the set of all rational numbers. Show that the function $f: \theta \rightarrow \theta: f(x)=3 x+5 \forall x \in \theta$ is bijective. Also find f^{-1}.
(b) If R is a relation in $\mathrm{N} \times \mathrm{N}$, defined by $(a, b) R(c, d)$ if and only if $a+d=b+c$, show that R is an equivalence relation.
5. (a) Find $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{\sin ^{3} x}$.
(b) Find $\lim _{x \rightarrow 3} \frac{3-x}{\sqrt{4+x}-\sqrt{1+2 x}}$.

SECTION - III

6. (a) Find the Differential coefficient of $\tan x$ by first principle.
(b) Differentiate w.r.t. x
(i) $\frac{x}{\sin 3 x}$
(ii) $\frac{x^{2}+1}{x+1}$
7. Differentiate w.r.t. x
(i) $\sqrt{\frac{1-\sin x}{1+\sin x}}$
(ii) $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}-1}}{x}\right)$
(iii) $x^{\log x}$
(iv) $\frac{x \sqrt{x^{2}+1}}{(x+1)^{2 / 3}}$

SECTION - IV

8. Evaluate the following integrals :
(i) $\int e^{x} \cos x d x$
(ii) $\int \frac{1+x}{(2+x)^{2}} e^{x} d x$
(iii) $\int \frac{d x}{\sqrt{x^{2}+2 x+2}}$
