- (b) Describe:
- (i) Buffer capacity
- (ii) Degree of dissociation

SECTION - D

8. (a) State First law of thermodynamics in different ways. Derive the mathematical expression for it. 4

- (i) Extensive and intensive properties
- (ii) Reversible and irreversible processes
- 9. (a) Derive thermodynamically Kirchoff's equation. 4
- (b) Explain:

- (i) Hess law
- (ii) Entropy

Roll No.

91534

B. Sc. (Hons.) Chemistry 2nd Sem. Latest Examination – April, 2018

PHYSICAL CHEMISTRY

Paper: 202

Time: Three Hours]

Maximum Marks: 40

complaint in this regard, will be entertained after examination. have been supplied the correct and complete question paper. No Before answering the questions, candidates should ensure that they

Note: Attempt five questions in all, selecting one question All questions carry equal marks. from each Section. Question No. 1 is compulsory.

Describe the following:

 $1 \times 8 = 8$

- (a) What are zero order reactions?
- (b) What is the difference between order and molecularity of a reaction?
- (c) Why specific conductivity decreases with dilution?

91534-350 -(P-4)(Q-9)(18)

- (d) What are sparingly soluble salts?
- (e) Why Li⁺ ion has a smaller transport number than Na⁺ ion?
- (f) What is conductivity water?
- (g) What do you mean by spontaneous process?
- (h) Define enthalpy of neutralization.

SECTION - A

- (a) What are Pseudo-unimolecular reactions? Give examples.
- (b) How can you determine order of a reaction by method of integration?
- (c) A first order reaction is 40% complete in 50 minutes. Calculate the value of rate constant. In what time will the reaction be 80% complete? 4
- 3. (a) Describe the effect of temperature on rate of reaction.
- (b) Derive an expression for the rate constant for second order reactions. Mention the important characteristics of these reactions.

SECTION - B

- 4. (a) Explain the term specific and equivalent conductivity. How are they inter-related?

 4
- (b) State and explain Ostwald's dilution law.
- (a) Describe:

6

4

- (i) Kohlrausch's law
- (ii) Arrhenius theory of ionization
- (b) If specific conductivity of N/50 KCl solution at 298 K is 0.002765 ohm⁻¹cm⁻¹ and resistance of a cell containing this solution is 100 ohms. Calculate the cell constant.

SECTION - C

- 6. (a) What is buffer solutions? Explain the different types of buffer solutions.
- (b) Derive Henderson equation for acidic buffer mixture.
- (c) Explain the method of calculation of transport number by Hittorf's method.
- (a) Briefly explain the Debye Huckel theory of strong electrolytes.

91534-

-(P-4)(Q-9)(18) (2)