22023

M. Sc. Physics 2nd Semester Examination – May, 2019

ATOMIC AND MOLECULAR PHYSICS

Paper: Phy(H)-203

f Maximum Marks: 80

Time: Three hours J I reasonness. Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after supplied.

examination.

Note: Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

- 1. (a) What are the possible values of n, l and ms if a hydrogen atom has $m_l = -2$?
- (b) Distinguish between the normal and anomalous Zeeman Effect.
- (c) The intensity of $J=0 \rightarrow J=1$ is often not the most intense line. Why?

P. T. O.

(d) Write the main features of Vibrational rotational spectra of diatomic molecules.

UNIT - I

- (a) Drive an expression for the spin orbit interaction energy. Draw energy level diagram for hydrogen atom.
- (b) Define gyromagnetic ratio. Find the relation between μ_s and S of an electron.
- 3. Calculate the spin orbit interaction energy for a single non penetrating valence electron. How will you explain the separation of ²P and ²D terms of alkali spectra?

UNIT - II

- 4. (a) Distinguish between normal Zeeman, anomalous Zeeman and Paschen back effects. Determine the Lande g-value for the various levels of ³P and ³D multiplets.
- (b) Illustrate with an energy level diagram, PachenBach effect for the D₂ line of sodium.
- **5.** (a) Calculate Zeeman pattern for ${}^{3}P_{1} {}^{3}P_{2}$ transition in one electron atom.
- (b) Show by actual transitions the Stark effect components of H_{α} line of hydrogen.

UNIT - III

- 6. Obtain the expression for the energy of a rigid-rotator model of diatomic molecule and predict the pure rotational spectra of the molecule.
- 7. (a) The far infra-red spectrum of H¹Br⁷⁹ consists of a series of lines spaced 17 cm⁻¹. Find the internuclear distance of H¹Br⁷⁹. (h = 6.63×10^{-34} J s, c = 3×10^{8} m/s & N_A = 6.023×10^{23} mol⁻¹).
- (b) Diatomic molecules such as CO, HF will show a rotational spectra whereas N₂, O₂, H₂ will not. Why? Will the molecule ¹⁷O ¹⁶O show a rotational spectra.

UNIT - IV

- 8. (a) Explain diatomic molecule as symmetric top. Deduce expression for the rotational energy levels of a symmetric-top molecule and discuss the structure of their vibrational bands.
- (b) Find the amplitude of vibration of HCl in the first excited vibrational level. The force constant k of the vibrating HCl molecule is 480 N/m and its reduced mass is 1.62×10^{-27} . (h = 6.63×10^{-34} J s) 4
- **9.** Discuss the fine structure of Infrared bands of diatomic molecules. Why they are all degraded towards longer wavelength?