B.Tech (ME) 5th Semester(G-Scheme) Examination, November-2023

FLUID MACHINES

Paper-PCC-ME-309-G

Time allowed: 3 hours]

[Maximum marks: 75

Note: Attempt five questions in all selecting one question from each unit. Question no. 1 is compulsory. All questions carry equal marks.

- 1. (a) State impulse momentum principle.
 - (b) What difference between impulse & reaction turbine?
 - (c) What is priming? Why it is necessary?
 - (d) What is NPSH and draw its expression?
 - (e) Hydraulic intensifier
 - (f) Purposes of Draft tube

6×2.5=15

Unit-I

2. (a) Derive an expression for force exerted by a jet of water on an inclined fixed plate in the direction of the jet.

in March.

3211

STOP BLEETING

- A nozzle of 50mm diameter deliver a stream of water at 20m/s perpendicular to the plate that moves away from the jet at 5m/s. Find the force on plate, work done and efficiency of jet. 5+10=15
- 3. (a) Derive an expression for efficiency and maximum efficiency of Pelton turbine.
 - (b) A Pelton wheel is required to develop 6M power when working under a head of 300m. It rotates at a speed of 600rpm. If jet ratio is 10 and overall efficiency is 85%, then determine. diameter of wheel, quantity of water required and number of jets. 5+10=15

Unit-II

- Explain the component parts, construction and operation of modern Francis turbine with detailed sketch. 15
- In a tidal power plant, bulb turbine (which is basically an axial flow turbine) operates a 5MW generator at 150 rpm, under a head of 5.5m the generator efficiency is 93% and overall efficiency of turbine is 88%. The

3211

Assuming hydraulic efficiency of 94% and no exit whirl, determine the runner vane angles at inlet and exit at the mean diameter of the vanes.

Unit-III

- 6. Derive an expression for minimum speed required for starting a contrifugal pump. Define the term specific speed of a centrifugal pump and deduce an expression for it in terms of the Head H, Discharge Q, and the Speed N.
- 7. The pressure difference Δp in a pipe of diameter D and length L due to turbulent flow depends on the velocity V, viscosity μ, density ρ and roughness k. Using Buckingham's π-theorem, obtain an expression for Δp.

Unit-IV

8. Write an expression for discharge, work done and power required to drive a double acting reciprocating pump.

Also explain the effect of acceleration on suction and discharge pipes in case of reciprocating pump.

3211

9. Write short notes on:

5+5+5=15

- (a) Torque converter
- (b) Fluid coupling
- (c) Hydraulic accumulator