B.Tech. 3rd Semester (Mechanical Engg.) (G-Scheme)

Examination, November-2023

THERMODYNAMICS

Paper-PCC-ME-213-G

Time allowed: 3 hours]			[Maximum marks: 75
Noi	q	uestion from ea	uestions in all, selecting one ch unit. Question no. 1 is estions carries equal marks.
1.	Exp	lain the following:	6×2.5=15
	(a)	Reversible and ir	reversible processes
	(b)	Internal energy an	d enthalpy
	(c)	Sensible heat and	latent heat
	(d)	PMM2	
	(e)	Dryness fraction	
	(f)	Carnot theorem	
	4	\mathbf{U}_{i}	nit-I
2.		ve the expression foresses.	or work done in various non flow
3.	(a)	What is a PMM1	? Why is it impossible? 4
	(b)		of Thermodynamics? 4
	(c)		is a path functions and not a
306	0- P-3	-Q-9 (23)	[P. T.O.

Unit-II

- 4. (a) Draw phase equilibrium diagram for a pure substance on t-s plot with relevant constant property lines.
 - (b) What is critical state? Explain the terms critical pressure, critical temperature and critical volume of water?
- 5. Find the specific volume, enthalpy and internal energy of wet steam at 18 bar with dryness fraction (x) = 0.85, by using Steam Tables and Mollier chart.

Unit-III

- 6. 0.8 kg of air flow through compressor under steady state conditions. The properties of air at entry are: pressure 1 bar, velocity 10m/s, specific volume 0.95 kg/m³ and internal energy 30 KJ/kg. The corresponding values at exit are: 8 bar, 6m/s, 0.2kg/m³ and 124KJ/kg. Neglecting the change in potential energy, Calculate the power output and pipe diameter at entry and exit.
- 7. State and discuss the Kelvin-Plank and Clausius statement of Second Law of Thermodynamics. 15

Unit-IV

- 8. Air enters a compressor at 1 bar, 30°C, which is also the state of environment. It leaves at 3.5 bar, 141° and 90m/s. Neglecting inlet velocity and P.E. effect, Determine:
 - (a) Whether the compression is adiabatic or polytropic
 - (b) If not adiabatic, the polytropic index
 - (c) The isothermal efficiency
 - (d) The minimum work input and irreversibility and
 - (e) Second law efficiency.

Take Cp of air = 1.0035kJ/kgK

15

9. Explain the Carnot cycle. Derive its thermal efficiency relation and draw the p-v and t-s diagram. 15