[Graph Paper

M.B.A. 2 Year 3rd Semester (CBCS) 2019-20 New Scheme Examination, November-2023 OPERATIONS RESEARCH Paper- 20IMG23C3

Time allowed: 3 hours]

[Maximum marks: 80

Note: Attempt compulsory Question No. 1 from Section-A and four questions from Section - B one question from each Unit. All questions carry equal marks.

Section-A

- 1. Briefly discuss / illustrate the following:
 - (a) Meaning of operations research
 - (b) Constraints in LPP
 - (c) Unbalanced transportation problem
 - (d) Objective of assignment model
 - (e) Critical activities
 - (f) Decision tree
 - (g) Assumptions of queuing theory
 - (h) Limitations of game theory

Section-B

Unit-I

2. Discuss the essential characteristics of Operations Research (OR). What are the phases in OR study?

- 3. Solve the following LPPs graphically:
 - (a) Max $z = 8x_1 + 16x_2$ Subject to $x_1 + x_2 \le 200$ $x_2 \le 125$ $3x_1 + 6x_2 \le 900$ $x_1, x_2 \le 0$
 - (b) Minimize $z = 3x_1 + 5x_2$ Subject to $-3x_1 + 4x_2 \le 12$ $2x_1 - x_2 \ge -2$ $2x_1 + 3x_2 \ge 12$ $x_1, x_2 \ge 0$

Unit-II

4. Solve the following transportation problem for maximising the total revenue.

To From	Р	Q	R	S	Total (Units)
A	12	10	12	13	500
В	7	11	8	14	300
C	6	16	11	7	200
Total (units)	180	150	350	320	1000

5. Solve the following travelling salesman problem for minimising the total distance and visiting each city only once:

To From	Ą	В	C	D	Е
A		103	188	136	38
В	103	· · ·	262	176	52
C	187	262	, -	85	275
D	136	176	85		162
E	38	52	275	162	

Unit-III

6. Three time estimates (pessimistic - tp, most likely-t_m, optimistic - t_o), in days, of a PERT project are shown below:

Activity	1-2	2-3	2-4	3-5	3-6	4-6	5-7	6-7	7-8
to	4	5	4	15	10.	8	4	12	6
t _m	6	7	8	20	18	9	12	15	9
t _p	8	15	12	25	26	16	14	18	12

Draw the network, identify the critical path and determine EST, EFT, LST and LFT for each activity.

- 7. (a) Differentiate between PERT and CPM.
 - (b) Discuss the steps involved in the decision making process.

(c) What is the dummy activity? Why do we need dummy activities?

Unit-IV

- 8. Using suitable examples, explain and illustrate the following:
 - (i) Pure strategies
 - (ii) Mixed strategies
 - (iii) Rule of dominance
 - (iv) Value of a game
- 9. Discuss the process, advantages, limitations and applications of simulation.

[Encl: Graph Paper