B.Tech. (ME) 2nd Semester (G-Scheme)

Examination, May-2024

MATH-II

Paper: BSC-MATH-102-G

Multivariable Calculus, Differential Equations &

Complex Analysis

Time allowed: 3hours]

P Fill

[Maximum marks: 75

Note: Answer any one from each unit. Question No.-1 is compulsory. In the Hard reach has

Answer all the questions:

(a) Solve

$$(12x + 5y - 9)dx + (5x + 2y - 4)dy = 0$$

Find the Integrating factor (8) (b)

$$\cos^2 x \frac{dy}{dx} + y = \tan x$$

- (c) State Gauss theorem.
- (d) Write the Cauchy-Riemann equation.
- Define poles and Singularity of an Analytic (e) Parametre function.

(f)
$$\int_{0}^{2a} \int_{0}^{x^{2}/4a} xy \, dy \, dx$$

3015-P-4-Q-9(24)

[P.T.O.

Unit-I

- 2. (a) $\iint (x+y)^2 dx dy \text{ over the area bounded}$ by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 7.5
 - (b) Evaluate by changing the order of Integration $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dx dy.$ 7.5
- 3. (a) Apply Green's theorem to evaluate $\int_{C} [(2x^2 y^2)dx + (x^2 + y^2)dy] \text{ where } C$ is the boundary of the area enclosed by x-axis and upper half of circle $x^2 + y^2 = a^2$. 7.5

(b)
$$\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z}$$
 7.5

Unit-II

4. (a) Solve the differential equation

$$xy(1+xy^2)\frac{dy}{dx}=1$$
 7.5

(b) Solve:
$$y - 2px = \tan^{-1}(xp^2)$$
 7.5

5. (a) Solve:
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$$
 7.5

(b) Solve by method of variation of Parametre

$$y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$$
 7.5

Unit-III

- 6. Determine the analytic function whose real part is $u = e^{2x}(x\cos 2y y\sin 2y)$ 15
- 7. (a) Show that the function $f(z) = \sqrt{|xy|}$ is not regular although the Cauchy-Riemann Equation is satisfied.
 - (b) Find the image in w-plane of the disk $|z-1| \le 1$ under the mapping $w = \frac{1}{z}$.

Unit-IV

8. (a) Use Cauchy Integral formula to evaluate $\oint_C \frac{e^{2z}}{(z+1)^4} dz \text{ where } C \text{ is the circle}$ |z| = 2.

(b) Evaluate
$$\oint_C^{2+i} (\overline{z})^2$$
 along 7.5

- (i) The line y = x
- (ii) The real axis to 2 and then vertically to 2 + i

[P.T.O.

9. (a) Evaluate $\oint_C \frac{2z-1}{z(z+1)(z-3)} dz$ where C is the

circle |z|=2.

7.5

 $(b) \int_{0}^{2\pi} \frac{\cos 3\theta \ d\theta}{5 - 4\cos \theta}$

7.5

or could be suited to a

a de negalggem stenske i to at

A Comment

noviews of almands Total of made said (n) is

storio est e o orodwe el circle

A = 2. 2 P 17 17 15

in the second (2) stong

i) The line year,

ii) The rest and to I and then vertically to

1.25