B.Tech. 4th Semester (AUE) F-Scheme Examination, May-2018

ENGINEERING ANALYSIS & NUMERICAL METHODS

Paper-AUE-202-F

Time allowed: 3 hours] [Maximum marks: 100.

Note: Question No. 1 is compulsory. Attempt total five questions with selecting one question from each section. All questions carry equal marks.

- 1. (a) What is a divided difference table? How is it useful?
 - (b) Define forward differences and backward differences.
 - (c) What are direct methods and iterative method to Solve the system of linear equations?
 - (d) What are the limitations of Taylor's series method for solving ordinary differential equations?

- (e) Define Jacobi's iteration method of linear equation.
- (f) How are the partial differential equations classified? Give an example for each type.
- (g) Using Euler's method, find approximate value of y when x = 1 of $\frac{dy}{dx} = x + y$, y(0) = 1 (take h = 0.2)
- (h) State Trapezoidal Rule.

Section-A

2. (a) Solve the equations:

$$10x - 2y - 3z = 205;$$

$$-2x + 10y - 2z = 154;$$

$$-2x - y + 10z = 120$$

by using iterative method.

(b) Solve the equations:

$$3x + 2y + 7z = 4$$
$$2x + 3y + z = 5$$

3x + 4y + z = 7

by Gauss Jordan method.

 (a) Determine the largest eigen value and the corresponding eigen vector of the matrix.

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

(b) Using Jacobi's Method, find all the eigen value and the eigen vector of the matrix.

$$\mathbf{A} = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 5 \end{bmatrix}$$

Section-B

4. (a) Given that

x: 150 152 154 156

 $y = \sqrt{x}$: 12.247 12.329 12.410 12.490

Evaluate $\sqrt{155}$ using Lagrange's interpolation formula.

- (b) Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial^2 x}$ subject to the conditions $u(x, 0) = \sin \pi x$, $0 \le x \le 1$; u(0, t) = u(1, t) = 0, using (a) Schmidt Method. Carryout computations for two levels, taking $h = \frac{1}{3}$, k = 1/36.
- 5. (a) Find the cubic polynomial which takes the following values:

x: 0 1 2 3

f(x): 1 2 1 10

Hence or otherwise evaluate f(4).

(b) Use Stirling's formula to evaluate f (1.22), given

x: 1.0 1.1 1.2 1.3 1.4

f(x): 0.841 0.891 0.932 0.963 0.985

Section-C

 (a) Find the first and second derivatives of f (x) at 1.5 if

x: 1.5 2.0 2.5 3.0 3.5 4.0

f(x): 3.375 7.000 13.625 24.000 38.875 59.000

- (b) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using
 - (i) Trapezoidal rule taking $h = \frac{1}{4}$
 - (ii) Simpson's rule taking $h = \frac{1}{6}$
- 7. (a) Find $I = \int_0^1 (1+x^2) dx$, by Gauss formula.

(b) Using trapezoidal rule to evaluate the integral

$$\int_{l}^{2}\cdot\int_{l}^{2}\frac{dx\;dy}{x+y}\,,$$

taking four sub-intervals.

Section-D

- 8. (a) Using modified Euler's method, find y for x = 0.1 and 0.2 Given that $\frac{dy}{dx} = xy + y^2$, y(0) = 1.
 - (b) Using modified Euler's method, obtain a solution of the equation $\frac{dy}{dx} = x + |\sqrt{y}|$, with initial conditions y = 1 at x = 0, for the range $0 \le x \le 0.6$ in steps of 0.2.
- Solve the elliptic equation

$$u_{xx} + u_{yy} = 0$$

for the following square mesh with boundary values as shown -

